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Abstract

In 1979, David Fabian found a complete game of two-person Chinese Checkers in 30 moves
(15 by each player) [Martin Gardner, Penrose Tiles to Trapdoor Ciphers, MAA, 1997]. This
solution requires that the two players cooperate to generate a win as quickly as possible
for one of them. We show, using computational search techniques, that no shorter game is
possible. We also consider a solitaire version of Chinese Checkers where one player attempts
to move her pieces across the board in as few moves as possible. In 1971, Octave Levenspiel
found a solution in 27 moves [Ibid.]; we demonstrate that no shorter solution exists. To show
optimality, we employ a variant of A* search, as well as bidirectional search.

1. Introduction

The game of Halma was invented in the 1880’s by George H. Monks [1, 11]. This game
is played on a rather large 16 × 16 board and is still popular in parts of Europe. In 1892,

a significant variation appeared in Germany played on a triangular grid, originally called
Stern-Halma [11]. When this game was marketed in the United States it was given the

more exotic-sounding name Chinese Checkers, although it did not originate in China and
is not a variant of Checkers. Chinese Checkers remains a popular children’s game in the

United States.

Chinese Checkers is normally played using marbles on a 121-hole, star-shaped board.

However, the two-player version of the game can equivalently be played on a square 9 × 9

board, with move directions as given in Figure 1a1. Although the board symmetry is harder

1This is possible because the two players move between two opposing “points” of the star. The 3 or
6-player versions of Chinese Checkers cannot be played on a square 9 × 9 board.

http://arXiv.org/abs/0803.1245v2
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Figure 1: A Chinese Checkers board (left) and Halma board (right) with men in their starting
positions. The central man shows the directions of allowed movement.

to see, it allows us to consider Halma and Chinese Checkers as games played on the same
board shape.

We will refer to a board location as a cell, with coordinates given in Figure 1a. We

will also find it useful to use Cartesian Coordinates to refer to a cell, with the origin at the
center of the board2. Each player begins with a certain number of identical game pieces,

called men3. The set of men owned by one player will be referred to as her army. The
standard Chinese Checkers army has 10 men, and the standard Halma army has 19 men.

A move in either game is a step move or a jump move, as defined by:

1. A step, where a man is moved one cell in the direction indicated by the arrows in

Figure 1.

2. A chain of one or more jumps by the same man. A jump is where a man hops over

another man (of either army) into an empty cell. Jumps are allowed in any of the

directions indicated by the arrows in Figure 1. The jumped piece is not removed from
the board—there are no captures. Jumps are never compulsory—a player may choose

to stop a chain whenever she pleases.

The area where a player’s army begins from (outlined in Figure 1) will be called that

player’s base. Players alternate moves; the first player to fully occupy the opposing base is
the winner. A complicating factor is how to deal with a player who refuses to vacate their

own base, preventing the other player from winning. Various additional rules have been
proposed to prevent this [11], but these will not concern us here.

In this square-board geometry the movement rules for Chinese Checkers and Halma

2The Halma board has no central hole, we just use the cell identified in Figure 1b as the origin.
3To compensate for this male-oriented terminology, all players will be female.
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are identical except for the directions of possible movement. Halma allows moves in all
8 directions from a cell, along rows, columns, and both diagonals—we will refer to these

movement rules as 8-move rules. In Chinese Checkers, one parallel direction of diagonal
movement is not allowed, these will be referred to as 6-move rules. Although it may appear

artificial to remove only one direction of diagonal jump, this rule variation is completely
natural on the triangular grid on which Chinese Checkers is normally played.

A final variation is to allow steps and jumps only along columns and rows; this variation

will be called 4-move rules. Figure 2a shows a standard game of Checkers (English Draughts)
viewed with the board rotated 45◦. We can remove the white squares (they are not used),

and play Checkers on the 32-cell board in Figure 2b under 4-move rules. Although Checkers
has more complex jumping rules (captures), this shows how the basic jumps and steps of the

game can be viewed as moves restricted to columns and rows—that is, 4-move rules.

Figure 2: (a) A standard game of checkers. (b) The same game under 4-move rules.

Halma game play naturally divides into three distinct phases (using George Monks’ orig-
inal terminology [1]):

1. the gambit, where the armies advance toward one another but do not interact,

2. the melee, where the two armies interact and eventually pass through one another,

3. the packing, where the armies separate and attempt to fill the opposing bases as
quickly as possible.

This paper does not address game play directly, but considers two puzzles based on
Chinese Checkers and Halma. The first puzzle concerns the shortest possible game. In 1979,

David Fabian, working by hand, found a complete game of Chinese Checkers in 30 moves [7,
p. 309] (15 moves by each player). This is remarkably short considering that each of the 20

men (both armies) must make at least one move. Such a solution requires that both sides
cooperate so that one of them wins as quickly as possible, and thus has little to do with a

competitive game. We will show that no game can be shorter than 30 moves.

A second puzzle we consider is a solitaire version of the game, where the goal is to advance
an army across the board in as few moves as possible (with no opponent’s pieces in the way).
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We’ll refer to these puzzles as “army transfer problems”. Such problems were a favorite
of Martin Gardner—in three of his Scientific American columns he discusses army transfer

problems on three different boards. First with regard to a Checkers board (Figure 2) under
4-move rules [3], then in the context of Halma on a 9× 9 board under 8-move rules [4], and

finally in the context of Chinese Checkers under 6-move rules [7]. We will find the shortest
possible solution to these three army transfer problems, and consider various generalizations.

2. The shortest possible game

The game is considered ended when one player fully occupies her opponent’s base, even if the

other player does the same on her next move. Draws can’t occur except in artificial situations
where a player refuses to leave her base, or the players move pieces back and forth so that

the game goes on forever. On some boards one player can be stalemated with no possible
moves. This is not possible in standard Chinese Checkers or Halma (there are not enough

men in one army to trap the opposing army in a corner), but can occur among cooperating
players for other variants. We’ll not consider such stalemated games as candidates for the

shortest possible game.

The length of a completed game is defined as the total number of moves taken by both

players. We assume that the blue player, starting from the upper left in Figure 1, always
moves first. The red player moves second; if she wins first on her 15th move, it is a 30 move

game. If the blue player wins first on her 15th move, it is a 29 move game.

2.1 Types of men

0 1 0 1 0 1 0 1 0

2 3 2 3 2 3 2 3 2

0 1 0 1 0 1 0 1 0

2 3 2 3 2 3 2 3 2

0 1 0 1 0 1 0 1 0

2 3 2 3 2 3 2 3 2

0 1 0 1 0 1 0 1 0

2 3 2 3 2 3 2 3 2

0 1 0 1 0 1 0 1 0
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Figure 3: Type labeling of a Chinese Checker board.

Clearly jumps are more effective than steps to move an army quickly across the board.
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However, a certain number of steps are generally needed. A skilled player selects a careful
mixture of jumps and steps to advance her army across the board.

There is a fundamental difference between steps and jumps. In Figure 3, we checker the
board with a pattern of four type labels 0–3. We label the men in an army by their type,

and observe that only step moves can change a man’s type. On a Chinese Checker board,
both bases have the same number of men of each type. Therefore, the winning player will

have the same types of men at the end of the game that she started with. Interestingly, this

is not true of Halma, where the type 0 and type 3 men must effectively change places during
the game. The counts of the number of types of men for each game are given in Table 1.

Chinese Checkers Halma
Type # starting # finishing # starting # finishing

0 3 3 6 3
1 3 3 5 5
2 3 3 5 5
3 1 1 3 6

total men 10 10 19 19

Table 1: The number of men of each type for the games of Chinese Checkers and Halma
(from the blue player’s perspective).

This suggests that it may be possible to play an entire game of Chinese Checkers without
making any step moves, and we will see that it is possible. For Halma, however, the same

argument shows that at least three step moves are required to win the game. The difference
is due to the fact that the board side in Halma is even (20), while for Chinese Checkers it is

odd (9). In general, we’ll refer to these as even or odd boards, and this type disparity will

be seen on any even board. On an odd board, the number of starting and finishing types
will be the same, as long as the starting army is symmetric about the diagonal line x = −y.

In Chinese Checkers, to advance a type 0 or 3 man (move it closer to the opponent’s
base) requires a jump over a type 1 or 2 man, or a step, which converts it to a type 1 or 2

man. Similarly, advancing a type 1 or 2 man requires a jump over or conversion to a type 0
or 3 man. In Halma, a man of a certain type can advance by jumping or converting into any

of the other three types (because it is now possible to move diagonally between the bases).

2.2 Ladders

A ladder is any configuration of men that allows for quick transfer of men between the bases

by means of long chain jump moves. Figure 4 shows several ladders on a Chinese Checkers
board. These ladders are shown using the same color men to visually separate them, but in

general they can be composed of either army.
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Figure 4: Three ladders on a Chinese Checkers board.

The red (top) ladder in Figure 4 is composed of men of types 0 and 3, and can transport

men of the opposite types 1 and 2. We will refer to such a ladder as a “type 0&3 ladder”. The
blue (middle) ladder has these roles reversed, it is a type 1&2 ladder. The green (bottom)

ladder is also a type 1&2 ladder, but can only transport type 3 men. Because it can transport
only one type of man, the green ladder is less useful. Any ladder can transport at most two

of the four types of men, for the fastest transport of an army (with men of all types), at least

two ladders of different types will be needed.

The game would be relatively easy if the ladders were in place at the beginning. In reality,

ladders are not only used, they must be built and disassembled. Plus, in a competitive game
ladders will seldom be separate or complete as in Figure 4, and one player can strategically

“block” a ladder by stopping a man in the middle. But our focus now is on the shortest
possible game, where the players must cooperate to build the most efficient ladders, and

they need not be broken down at all if they are composed of the losing player’s men.

2.3 A lower bound on game length

Given two cells with Cartesian coordinates a = (ax, ay) and b = (bx, by), what is the mini-

mum number of step moves needed to move a man between the two? To answer this question,
we define the norm of a cell with Cartesian coordinates (x, y) as

||(x, y)|| =







||(x, y)||∞ = max(|x|, |y|) Halma or 8-move,
||(x, y)||1 = |x| + |y| 4-move,
||(x, y)||△ = 1

2
(|x| + |y|+ |x − y|) Chinese Checker or 6-move.

(1)

The norm ||(x, y)||△ is a combination of the first two norms, as shown by the alternate
formula

||(x, y)||△ =

{

max(|x|, |y|) if sgn(x) = sgn(y),
|x| + |y| otherwise.

(2)
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The formula (2) was given in 1976 in the context of image processing to calculate distances
on a hexagonal grid [8].

The distance between two board locations a = (ax, ay) and b = (bx, by) is then defined
as

d(a,b) = ||a− b|| = ||(ax − bx, ay − by)||, (3)

with norm appropriate for the game as defined in (1). d(a,b) is the minimum number of

steps needed to move a man from a to b.

Given two armies B and R, we define the distance between them as:

d(B, R) = min{d(b, r), ∀b ∈ B and r ∈ R}. (4)

If we let B and R be the initial positions of two armies at the beginning of a game, for
Chinese Checkers we can compute that d(B, R) = 10. Interestingly, for Halma we also have

d(B, R) = 10. Thus, despite the large difference in board size, the initial distance between
the two armies is the same for Chinese Checkers and Halma.

Theorem 1 If B and R are the initial positions of two equal-sized armies (s = |B| = |R|),

no game can be shorter than h moves, where

h = max{0, d(B, R) − 2} + 2s − 1. (5)

Proof: After one player moves, d(B, R) can decrease by at most 1. As soon as d(B, R) ≤ 2,
the next move can cross between the two armies. The best that can happen is that d(B, R)

decreases to 2, the next player then wins by placing a man from her army into her opponent’s
base on each of her subsequent s moves. The number of moves is then given by (5).

For a standard game of Chinese Checkers, the bound given by Theorem 1 is 27 moves,

and for Halma 45 moves.

2.4 A 30 move game of Chinese Checkers

David Fabian found a 30 move Chinese Checkers game in 1979 and sent it to Martin Gardner
[7, p. 309]. I contacted David Fabian about how he found his solution, he said he used “logic

and patience” to find it by hand. We can come up with a set of properties that a short solution

is likely to have. We can’t prove that the shortest solution must have these properties, but
they can guide us on our search for them, both by hand and using a computer.

From Section 2.1, if the winning player in Chinese Checkers makes one step, she will be
obliged at some point to make another. Therefore, it seems reasonable that in the shortest

possible game, the winning player only jumps. The losing player has no constraints on the
types of finishing men, and is likely to make some steps.
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If the game is to have length L, then there is a critical move, α = L − 2(|A| − 1), after
which the winning player must have at least one man in her opponent’s base. In Section 2.2

we learned that for a quick game two ladders must be built. The first ladder can be built by
both players in the moves before α, while the second ladder must be finished by the losing

player in the moves after α.

Figure 5: David Fabian’s 30 move game of Chinese Checkers.

In summary, some of the properties that a short solution usually has are:

1. The winning player only jumps (on odd boards).

2. The first ladder is built by both players during the first α moves.

3. The second ladder is completed by the losing player on moves after α.
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4. After each move n ≥ α by the winning player, there must be at least (n − α)/2 + 1
men in the opposing base.

5. In the middle of the game, each diagonal line x − y = k between the bases must be

occupied by at least one man, where −4 ≤ k ≤ 4 (this forces placement of two ladders).

Finally, Figure 5 shows David Fabian’s 30 move solution, which has all these properties

(α = 12 in this case). We have modified the losing player’s last move slightly, as there are
many possibilities. In fact this freedom might suggest the existence of a 29 move solution,

but we shall see that this is not the case.

2.5 Search algorithms

One way to show that no 29 move solution exists is to do a search of the game tree. We

perform a breadth-first search so that we can easily eliminate duplicate board positions.
The search proceeds by levels, where the level set Li consists of board positions that can

be reached after i moves. The level set L0 contains only the initial board position, while L1

contains one element for each possible first move by the blue player. There are 14 possible

first moves in Chinese Checkers, but 7 of these are equivalent by symmetry, so |L1| = 7,
|L2| = 7 · 14 = 98, and |L3| = 1253. The total size of the state space for the game is
(

81

10,10

)

≈ 8.67 × 1023, and the level sets Li grow much too rapidly to calculate L29.

Fortunately a very good lower bound on the number of moves remaining exists, namely

the bound given in Theorem 1. Although the bound in Theorem 1 assumes the board is in

the initial position, it can be easily modified to apply to any board position. If the distance
between the two armies d(R, B) > 2, we can use (5) unmodified. When this distance becomes

two or less, we modify s in (5) to be the number of men in the winning army that are not
in the opposing base. Given any board position P , we can use (5) as a lower bound on the

number of moves remaining, h(P ).

To apply this in our search scheme we use a version of A* search called “breadth-first

iterative deepening A*” [13]. Suppose we are searching for a solution with length at least
m. At move i if the board position is P , no solution from this board position can be shorter

than i + h(P ). Thus, we can terminate the search from this node if i + h(P ) > m.

This gives a search tree that expands rapidly until a critical move α, the first move where

the winning player must place at least one man in the opposing base. At this level the search
tree contracts significantly. But the next move by the losing player is unconstrained so the

search expands, only to contract on the next move by the winning player who again must

place another man in the opposing base.

For Chinese Checkers, we know that a solution of length 30 exists. Therefore, we apply

the search algorithm to look for all solutions of length 29 and 28. These searches come up
empty, so the shortest solution has 30 moves. The solution in Figure 5 is not unique; the
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search technique finds several hundred different 30 move games.

The same algorithm can find the shortest game for many other starting configurations.

The search strategy in these cases proceeds follows: first, by incorporating the heuristic rules
of Section 2.4, we find a solution of length N which we believe is the shortest possible. Then,

we remove these heuristic rules and use only the bound on solution length (5) to show that
no solution exists of length m = N − 1 and m = N − 2.

Move Army Lower Shortest
Game Board Rule Size d(B, R) Bound (5) Game

Chinese Checkers 9 × 9 6-move 10 10 27 30
Chinese Checkers (15 man) 9 × 9 6-move 15 8 35 36
Halma 16 × 16 8-move 19 10 45 Unknown
Grasshopper 8 × 8 8-move 10 4 21 24
Chinese Checkers (8-move) 9 × 9 8-move 10 5 22 24

Table 2: Summary of shortest game lengths on various boards.

Table 2 shows the results of these runs. For a Chinese Checkers game with 15 men per
side, David Fabian found a 38 move game [7, p. 309], but our algorithm finds that a 36 move

game is the shortest possible. Grasshopper [4, p. 117] is Halma played on an 8 × 8 (even)
board, with the initial configuration of 10 men the same shape as in Chinese Checkers. By

the type analysis in Section 2.1, the winning player must make at least 2 step moves, and

a game in 22 moves or less is impossible. In order to win in exactly 24 moves, the winning
player must make 2 step moves and 10 jump moves, and each of the jump moves must finish

either inside their opponents base or one cell short of it. For the same game on a 9×9 board
(odd), the shortest game also has 24 moves, but the winning player only jumps.

3. Army transfer problems

We now consider the problem of moving one army quickly between bases, without any
opposing men. On a Chinese Checkers board, this problem was discussed in a 1976 Martin

Gardner column [7], although the earliest reference is a 1959 Canadian periodical on magic
[2]. Octave Levenspiel worked by hand to find short transfers; in 1971 he found a 27 move

solution [7, p. 73].

Figure 6 shows Levenspiel’s 27 move solution. An interesting feature of this solution is

that it is palindromic, meaning that moves 15–27 are mirror images of the moves 1–13,

taken in the reverse order (where the mirror symmetry is about the line x = y), and move
14 is itself mirror symmetric. If the solution is interrupted in the middle of the 14th move

(the last diagram of Figure 6), the board position is mirror symmetric about the line x = y.
It is not true that every 27 move solution to this problem is palindromic, but palindromic
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Figure 6: Octave Levenspiel’s 27 move solution. Only the first half of the solution is shown,
because the solution is a palindrome (only half of the 14th move is shown).

solutions often seem to exist, and are the most elegant.

In 1973, Harry O. Davis sent Martin Gardner a proof that 27 moves was the shortest
possible solution to this problem. Although this proof is mentioned in Gardner’s book [7,

p. 68], it was never published. This proof has been preserved in Martin Gardner’s files [5].
Davis begins his one-page proof with an argument that the shortest solution to the problem

must contain at least 10 step moves (note that Levenspiel’s solution in Figure 6 contains 10
steps and 17 jump moves). However, we have found 27 move solutions to this problem with

only 8 step moves (see Appendix A), so Davis’ claim is false. Although the proof appears
flawed, the theorem is nonetheless true—there is no solution shorter than 27 moves. This

will be demonstrated numerically below.

3.1 Centroids and bounds

The (diagonal) centroid of a man a with Cartesian coordinates (ax, ay) is defined as

c(a) = ax − ay. (6)

The centroid c(a) is a measure of how far this man has progressed in his journey between

the bases. In the blue player’s army, the centroid of any man begins at −5 or less, and ends
at +5 or greater.
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The centroid of an army A is the integer-valued function defined by

c(A) =
∑

a∈A

c(a) =
∑

a∈A

ax − ay. (7)

This is related to the classical centroid, or center of gravity, in the following sense: the army
will balance across the diagonal line x − y = c(A)/|A|, where |A| is the size of army A.

This centroid gives a natural measure of an army’s progress, and in competitive games
which player is currently in the lead. In a game of Chinese Checkers, for example, where the

origin is the center of the board, for the blue player c(A) begins at −60 and ends at +60.
Note that the starting army balances on the line x − y = −6. When c(A) = 0, the army is

exactly half-way to their goal, and balances across the diagonal line x = y.

Theorem 2 Consider an army A, and let amin ∈ A be a man with minimum centroid,

i.e. c(amin) ≤ c(a), ∀a ∈ A. Similarly, let amax ∈ A a man with maximum centroid. Then
in one move, the centroid can increase at most δ, or decrease at most −δ, where

δ = c(amax) − c(amin) + ℓ, (8)

where ℓ = 1 for 4-move and 6-move play, and ℓ = 2 for 8-move play.

Proof: Only one man can move, and the greatest centroid increase is achieved by taking
a man amin with minimum centroid and increasing his centroid as much as possible. The

best amin can do is finish with a jump over some man with centroid c(amax). Under 8-move
play, if the last jump is diagonal, his final centroid can be be at most c(amax) + 2, otherwise

it can be at most c(amax) + 1.

Theorem 2 gives a relatively crude upper bound on centroid increase, which it is tempting
to refine further. Under 4 and 6-move rules, if c(amax) − c(amin) is even, in order to reach

c(amax)+1, the man amin must finish with a rightward or downward jump over a man amax,
and this is not possible because this man has the wrong type. In this case the upper bound

(8) can be reduced by one. More significantly, suppose the army can be partitioned into two
pieces A1 and A2 with amin ∈ A1, amax ∈ A2 and d(A1, A2) > 2. Then the man amin cannot

reach the other half of the army, and the bound (8) can be reduced considerably. All such
refinements result in a more complex formula for centroid increase.

We will also want to use Theorem 2 iteratively to obtain an upper bound on the centroid
increase of an army after n moves. In this situation, the complexity of an improved bound

increases greatly because we will have to consider the interaction of multiple moves. For
example, in the case where the army can be partitioned into A1 and A2 with d(A1, A2) = 3,

the first move could connect the two pieces, and then the second move could go between

them. The crude bound in Theorem 2 is much easier to implement iteratively, because it is
valid no matter how the moves interact.

We can also use the ideas in Theorem 2 to get a lower bound on the number of moves to
accomplish the transfer. We assume that the initial army is A, and the location of the target
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base is B (a fixed set of cells). As the army A advances, the distance d(A, B) can decrease
by at most one per move. Thus, the smallest number of moves to place a man in the target

base B is d(A, B). After this, the remaining |A| − 1 men move into the base B at best one
per move, so any solution to the transfer problem has length at least d(A, B) + |A| − 1. For

the standard Chinese Checkers army, this gives a lower bound of 19 moves, not a very tight
bound considering the minimum is 27 (as we shall see). Although these crude estimates

don’t get very close to the true optimum, we will see that Theorem 2 is useful during a
numerical search.

Figure 7: An elegant 16 move solution to a Halma transfer problem (H. Ajisawa and T.
Maruyama [4, p. 118]). Again, only the first half of the solution is shown.

Figure 7 shows a 16 move solution to a Halma transfer problem [4, p. 118]. The starting
and ending armies in this case are 3 × 3 square arrays of men. Diagonal steps and jumps

are allowed, in our terminology we have 8-move rules. The solution has even length and is
also palindromic, the board position after 8 moves is mirror symmetric about the line x = y.

Although our simple lower bound indicates that any solution must be at least 12 moves, we’ll
be able to show using the search algorithm in the next section that the 16 move solution in

Figure 7 is the shortest possible.

3.2 Search algorithms

As before our basic computational tool is breadth-first search, with the level sets Li defined

as before, except that only one player moves. Since the centroid must increase by 120 (from
−60 to +60), clearly the most productive moves are those that increase the centroid. To cut

down on the size of the level sets, it would seem we should only consider moves that increase
the centroid. If we do so, however, there is no guarantee that we will find the shortest

possible solution. Surprisingly, solutions of shortest possible length may contain moves that
decrease the centroid. Examples of this counter-intuitive phenomenon will be found below.
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There are several symmetries in this problem. The first is that the starting army is
symmetric about the diagonal line x = −y. This effectively halves the number of possible

starting moves, and decreases the search space by a factor of two. The starting and finishing
positions are also symmetric about the diagonal line x = y. Thus, the set of possible board

positions one move before the finish is the same as the set of possible board positions one
move from the start, reflected across the line x = y. This suggests that a good search

technique is bidirectional search [12]. To search for a solution of length 2N , we do a
breadth-first search to N moves, and intersect the level set LN with the set obtained by

reflecting each element of LN across the diagonal line x = y.

Suppose we have a solution of length 2N +1, and want to prove that no solution of length
2N exists. Suppose we also know that the maximum possible centroid after any sequence of

N moves is Cmax
N (this is the maximum centroid of any board position in the level set LN ).

For a solution of length 2N to exist, it must be that Cmax
N ≥ 0. The key observation is that

any solution of length 2N must have centroid at least −Cmax
N at level N .

At any level i ≤ N , we apply Theorem 2 iteratively to get an upper bound on the

centroid after N − i additional moves. If this upper bound is less than −Cmax
N , then this

board position cannot lead to a solution and we need not search further from this board

position. This search combines aspects of bidirectional and A* search techniques, and will
be called a minimum centroid constraint (MCC) search, because it eliminates boards with

centroid too small to lead to a solution.

If you try to implement this MCC search, you will notice a problem. We assumed that

we knew Cmax
N at the start of the algorithm, yet this number is not determined until the

algorithm is finished! In reality we must estimate Cmax
N , then run the search algorithm using

this estimate. If the search algorithm produces a board at level N with centroid greater than

Cmax
N , we must run it all over again with the correct Cmax

N . It is only after the search finishes
with a self-consistent value of Cmax

N , and the bidirectional search comes up empty, that we

are assured that no solution of length 2N exists.

One way to estimate Cmax
N is to truncate the search at each level, keeping only the top

M boards with the largest centroid. We have found that an M of a few million gives a good
estimate of Cmax

N . Short solutions can also be found quickly using this truncation technique.

Bill Butler solved the Chinese Checker transfer problem (Figure 6) this way, as documented
on his web site [14]. He found five different 27 move solutions, but because he truncated the

number of boards at each level, his search is not exhaustive.

For the standard Chinese Checker transfer problem, we find that Cmax
13 = 5. We should

note that although the MCC algorithm makes the search problem solvable, it is still not

easy. The largest level set L10 contains 1.3 × 107 boards, and the complete (unsuccessful)
search for a 26 move solution takes over two hours of CPU time4.

Table 3 gives the results of such a search over a wide variety of problems, with solutions

4On a 1 GHz PC with 512MB of RAM.
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Shortest solution under
Problem Configuration # Men Board 4-move 6-move 8-move

# 1 Triangle 6 9 × 9 25 23 16
# 2 Triangle 10 9 × 9 30 27 (Fig 6) 20
# 3 Triangle (jumps only) 10 9 × 9 46 35 (Fig 8) 21
# 4 Triangle 15 9 × 9 36† 31† (Fig 9) 26†
# 5 Square 4 9 × 9 15 15 12
# 6 Square 9 9 × 9 25 25 16 (Fig 7)
# 7 Checkers start 12 Fig 2b 20 16 16

† - MCC search did not terminate, a shorter solution may be possible.

Table 3: Summary of shortest solution lengths for transfer problems, all are the shortest
possible except as noted.

given in Appendix A. Except as noted, the MCC search is run to completion in each case,

so the number of moves given is the smallest possible. In particular, Octave Levenspiel’s
27 move solution in Figure 6 is the shortest possible, and 16 moves is the shortest solution

to the Halma transfer problem in Figure 7. Problem #7 was suggested by Gardner [3], and
refers to moving a 12-man army across a checkers board. This is equivalent to moving one

of the 12-man armies in Figure 2b to the opposite side under 4-move rules. The shortest
solution to this problem has 20 moves.

If we allow only jump moves, how quickly can a 10-man triangular army be transferred?

Table 3 shows that the answer (under 6-move rules) is 35 moves, with a sample solution
shown in Figure 8. One interesting feature of this solution is a backward jump on the 10th

move which reduces the army’s centroid c(A). This backward jump move can be explained
by the fact that the man making it is of type 3. There is only one type 3 man in this army,

and in order to utilize him he must be moved around a lot, even jumping backwards. This
phenomenon is also observed in the 4-move version of the problem.

Appendix A includes solutions to problems in Table 3 with backward step moves. These
exceptions indicate that we cannot eliminate backward jump and step moves when searching

for the shortest possible solution.

One interesting problem is the 15-man Chinese Checkers army (problem #4 in Table 3).

In 1974, Min-Wen Du of Taiwan sent Martin Gardner a letter with a solution to this problem
in 35 moves5 [6]. My search algorithm has found a solution to this problem in 31 moves (see

Figure 9), but an MCC search doesn’t finish, so it is not known if this is the shortest solution
possible. This 31 move solution is interesting because it uses two ladders rather than one.

5Note that [7, p. 68] describes this problem incorrectly. The letter [6] removes any ambiguity.
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Figure 8: The first half of a 35 move solution with jumps only (the shortest possible). Note
that the 10th move (middle diagram, second row) goes backwards!

3.3 Symmetry and palindromes

In many cases the shortest solution can be chosen to be a palindrome, and these solutions
are arguably the most elegant. We can add further constraints to search specifically for

palindromic solutions.

First, we define the level of symmetry of an army A. Given a man a with Cartesian
coordinates (ax, ay), the coordinates of the cell reflected across the line x = y are (ay, ax).

We define the function

sym(a) =

{

+1 if (ay, ax) is occupied,
0 otherwise.

(9)

We then define the army symmetry of an army A as

sym(A) =
∑

a∈A

sym(a), (10)

so sym(A) varies from zero to |A| depending on the symmetry of the army across the line

x = y, and sym(A) = |A| if and only if the army is mirror symmetric across this line.

Starting with an army A0, denote by Ai the board position after i moves. For a palin-

dromic solution of odd length 2N + 1 to exist, it must be that sym(AN) = sym(AN+1) =
|A|−1. For a palindromic solution of even length 2N to exist, we must have sym(AN) = |A|.
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These two situations can be seen in the second to the last diagram of Figures 6 and 8, and
the final diagram of Figure 7.

The symmetry of the starting army, sym(A0) = 0, but by the middle of a palindromic
solution of length 2N or 2N + 1, sym(AN) = T , where T = |A| for an even solution length

and T = |A|−1 for an odd solution length. But the function sym() cannot increase from 0 to
T in one move. Since a single move only affects one man, sym() can increase or decrease by

at most two (the only terms that can increase in the sum (10) are the endpoint of the move

and its mirror image). So for any i ≤ N , the board position Ai in a palindromic solution
must satisfy

sym(Ai) ≥ T − 2(N − i). (11)

Now consider the Chinese Checker transfer problem for the 15-man army (Problem #4

in Table 3 under 6-move rules). After N = 15 moves, for a palindromic solution of length
2N = 30 to exist, we must have sym(A15) = 15. The symmetry constraint (11) is therefore

sym(Ai) ≥ 15 − 2(15 − i) = 2i − 15 for 8 ≤ i ≤ 15. (12)

The symmetry constraint (12) can be added to the MCC algorithm, and it speeds up the
search after level 7, and we can run the search to level 15. The resulting bidirectional search

finds that there does not exist a palindromic 30 move solution. It remains a possibility that
a non-palindromic 30 move solution exists. The same search technique finds two palindromic

solutions of length 31 (Figure 9).

In general, the symmetry constraint (11) can be added to our search algorithm, and it can

dramatically increase the search speed. Once again, though, this search technique contains
a “chicken-in-egg paradox”, because in order to run the search, we must already know the

solution’s length. For a general problem, our search strategy is first to find a solution of
any length, then try to find a shorter solution, and finally to prove that no shorter solution

exists.

To find a solution of any length, we can truncate the level sets at each step, as explained
in the previous Section 3.2. This technique can be viewed as a truncation based on the

centroid “score” c(A), but it does not place any extra value on palindromic solutions. If the
truncated nth level set is Rn, then to find a solution of length 2N the set RN must satisfy

the conditions:

max {c(A), ∀A ∈ RN} ≥ 0, (13)

min {c(A), ∀A ∈ RN} ≤ 0. (14)

Since the truncation technique keeps board positions with largest centroid, the first condition
will eventually be satisfied as N increases. However, for large problems, the second condition

may not be satisfied (because of the truncation), and then no solution will ever be found, no
matter how large N is. For problems starting from 15-man armies, we instead truncate the

level sets based on the modified score

c(A) + βsym(A),
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Figure 9: The first half of a 31 move solution starting with 15 men. The only other palin-
dromic 31 move solution is obtained by extending the 15th move to end at c7.

where β ≥ 0 is an arbitrary weight factor for symmetry. This modified score weights palin-

dromic solutions more heavily. We have had good results using β = 2.

The palindromic solutions in Figures 6–9 are symmetric about the line x = y. Note

that the Checkers board of Figure 2 is not symmetric about the line x = y; a palindromic
solution on this board must instead be symmetric with respect to 180◦ rotation. Martin

Gardner gives a 20 move palindromic solution on this board [3, p. 217], and our algorithm

can find all palindromic solutions, using a version of sym(A) corresponding to a rotation
rather than a reflection.
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3.4 Fast armies and balanced armies

Given an army A, we define the center of mass m(A) ∈ R
2 as the average coordinate over

the army,

m(A) =
1

|A|

∑

a∈A

(ax, ay). (15)

The diagonal centroid of Section 3.1 is related to m(A) = (mx, my) by c(A) = |A|(mx−my).
If an army A moves to B in n moves, we define its average speed as the distance traveled

by the center of mass per move,

σ =
d(m(A),m(B))

n
=

||m(A) − m(B)||

n
, (16)

using the norm (1) specific to 4, 6 or 8-move rules. Note that the same army may have a

different speed measured under different rules. We call the army B a translate of A if B
can be obtained by shifting each man in A by the same (2D) vector k, B = {a+k, ∀a ∈ A}.

Figure 10: Speed 1 armies under 4 and 8-move rules: “atom” (1 man, green), “frog” (2 men,
blue), “serpent” (4 men, red).

Figure 10 shows fast armies of size 1, 2, or 4. Under 4-move rules, the three armies in the

top row each have speed 1. Auslander et al. [10] prove that if A moves to B under 4-move
rules, and B is a translate of A, then the speed σ cannot exceed 1, and the only speed 1

armies are the three in the top row of Figure 10. The bottom row of Figure 10 shows armies
under 8-move rules, all having speed 1. Under 8-move rules, all six armies in Figure 10 have

speed 1, except for the top serpent which has speed 1/2.

We say that an army is balanced if the distribution of men over types is as uniform as

possible. The smallest example of a perfectly balanced army are the serpents in Figure 10,
which contain one man of each type. The balance of an army can only be changed by a step

move. One reason why a balanced army may be fast is that the number of possible jump
moves is large. For example, among all 4-man armies under 4-move rules, the largest number

of possible jump moves is 8, and this can only be achieved by taking one man of each type,

as in the serpent, or 4 men in a square configuration.

In the previous sections we have seen fast armies of larger size. The speed in each case can

be computed and is given in Appendix A. One interesting aspect of the armies in Figures 6,
7 and 9 is that they are usually balanced. In the Chinese Checker problem of Figure 6, the
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army is initially unbalanced, because there are (3, 3, 3, 1) men of types 0–3. The first move
(d1-d2) converts a man of type 1 to type 3, resulting in the balanced army (3, 2, 3, 2).

Finally, we note that the most common opening among experienced players of competitive
Chinese Checkers is the balance restoring step d1-d2 [15]. Is this a coincidence? In the

future, it may be productive to look into the concept of army balance in competitive Chinese
Checkers games. Halma begins with the unbalanced army (6, 5, 5, 3); restoring balance would

suggest a diagonal step ending at the type 3 cells d4, f2, b6 or f6 as one of the opening moves.

4. Summary

Chinese Checkers and Halma seem to have a reputation as slow-moving games. Alternate
(but more complex) jumping rules have even been devised in an attempt to speed them up

[9]. However, increasing complexity does not necessarily improve a game. We have shown
than an entire game of Chinese Checkers can take as few as 30 moves. While such short

solutions rely on the two players cooperating, a competitive game can also move along more
quickly than many people think.

We have demonstrated, using computational search, that 30 moves is the shortest possible
Chinese Checkers game. We have also studied a solitaire version of the game where the goal

is to transport a single army across the board as quickly as possible. These solutions often
have palindromic symmetry, and pass through a board position which is mirror symmetric

across the line x = y. We have obtained a bound on how quickly the centroid can increase,

and applied it numerically to show that no standard Chinese Checkers army can cross the
board in under 27 moves.

We have also studied the army transfer problem in a more general context, considering
various army configurations under several different jumping rules, with results summarized

in Table 3. Can we always find a shortest solution that is palindromic? The answer is
probably no, but we have not seen a counterexample.

The problem of the fastest way to transport a 19-man Halma army across a 16×16 board
is difficult to answer computationally. Nonetheless, this is an interesting problem to work on

by hand, and we have found a solution in 47 moves, given in Appendix A. Can the reader
find a shorter solution? The centroid arguments of Section 3.1 give a lower bound of only

28 moves, so there would appear to be ample room for improvement.

Finally, we have introduced the concept of a balanced army, which means to keep (as

much as possible) the same number of men of each type. The fastest armies usually seem to

be balanced, and this is an interesting area for further study.

Acknowledgments We thank the anonymous referee for several suggestions which improved

the paper.
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Appendix A. Solutions

A.1 Shortest games

Chinese Checkers in 30 moves (Figure 5), 10 man armies, 6-move rules (by David Fabian):
c2-d2, h8-h6, d1-d3, i6-g6, a3-c3-e3, g9-g7-g5, a2-c2-e2-e4, h7-h5-f7, e4-f4, i9-g9-g7-e7, d3-c4, g6-

g4-e4-e2-c2-a2, a4-c2-e2-e4-g4-g6-e8-e6, i8-i6-g6-g4-e4-e2-c2-a4, a1-a3-c3-c5, f9-h7-h5-f5-f3-d3-d1,

c5-d5, e7-e5-c5-c3-a3-a1, b2-b4-d4-d6-f6-f8-h8, i7-g9-g7-e7-e5-c5-c3-a3, c1-e1-c3-c5-e5-e7-g7, h6-f8-

f6-d6-d4-b4-b2, b3-b4, g8-g6-g4-e4-e2-c2, b1-b3-b5-d3-f3-f5, g5-e5-c5-c3-c1, f5-f6, f7-f5-f3-d3-b5-b3-

b1, e6-g6-g8-i8, h9-h7-f7-f5-f3-d3-b5-b3 (red wins).

Chinese Checkers in 36 moves, 15 man armies, 6-move rules: e1-e2, g8-g6, c1-e1-e3, h6-f6, e3-

e4, f9-f7-f5, a1-c1-e1-e3-e5-g5-e7, g7-g5-e5-e3-e1-c1-a1, a5-b5, i7-g7-g5-e5-e3-e1-c1, c3-a5-c5, g9-i7-

g7-g5-e5-e3-e1-c3-a5, a3-c3-e1-e3-e5-g5-g7-i7-g9, i9-i7-g7-g5-e5-e3-e1-c3-a3, a4-c4-c6, e9-g7-g5-e5-

e3-e1-c3, c6-d6, i5-i7-g7-g5-e5-e3-e1, a2-a4-c4-c6-e6-g4, i8-g8-e8-e6-c6-c4-a4-a2, d2-f2, i6-g8-e8-e6-

c6-c4-a4, b3-d3-f1-f3-d5-d7-f7-h5, f5-f7-d7-d5-f3-f1-d3-b3, d1-f1-d3, h8-h6-h4-f4-d4-d2, b1-d1-f1-f3-

d5-d7-f7-f5, h9-f9-f7-d7-d5-f3-f1-d1-b1, b4-b6-d4-f4-h4-h6-h8, h7-h9-f9-f7-d7-d5-f3-f1-d1, c2-c4-c6-

e6-e8, g6-e6-c6-c4-c2, b2-b4-b6-d4-f4-h4-h6, f6-f4-d4-b6-b4-b2, d3-f1-f3-d5-d7-f7-f9-h9, f8-d8-f6-f4-

d4-b6-b4 (red wins).

A.2 Short solutions to army transfer problems

Problem numbers refer to those in Table 3. All solutions given are palindromic, so only half

the solution is given, followed by “(reflect)”. This indicates to repeat the moves in reverse
order, reflected about the line x = y. All solutions are the shortest possible, except as noted.

Problem #2 (Figure 6), 6-move rules in 27 moves (Octave Levenspiel), Cmax
13 = 5, σ = 4/9:

d1-d2, b1-d1-d3, a3-c3-e3, e3-f3, c1-c3-e3-g3, a1-a3-c3-e3, c2-e2-e4-g2-g4, g4-g5, a4-c2-e2-e4-g2-g4-

g6, a2-c2-e2-e4-g2-g4, d2-d4-f2-f4-h4-f6-h6, h6-h7, b3-c2, b2-d2-d4-f2-f4- (reflect). An alternate

solution with only 8 step moves: c2-d2, a4-c2-e2, c1-e1-e3, e3-e4, a1-c1-e1-e3-e5, a3-c1-e1-e3,

d1-d3-f3-d5-f5, f5-g5, a2-c2, b3-d1-d3-f3-d5-f5-h5, b1-b3-d1-d3-f3-d5-f5, d2-f2-d4-f4-f6-h4-h6, h6-h7,

b2-d2-f2-d4-f4- (reflect).

Problem #2, 8-move rules in 20 moves, Cmax
10 = 12, σ = 3/10: a2-c4, c4-d4, a4-a2-c4-e4,

b1-d3-f5, f5-f6, a3-c3-e5-g7, d1-b1-d3-f5-f7-h7, g7-h8, a1-c3-e5-g7-i7, b3-b1-d3-f5, (reflect).

Problem #2, 4-move rules in 30 moves, Cmax
14 = 5, Cmax

15 = 11, σ = 2/5: a4-b4, a2-a4-c4,

b4-d4, d4-d5, c1-c3-c5-e5, e5-e6, b2-b4-d4-d6-f6, f6-f7, a3-c3-c5-e5-e7-g7, g7-h7, d1-c16, c1-c3-c5-

e5-e7-g7-i7, i7-i8, b3-c3, c3-c5-e5-e7-g7-i7-i9, (reflect).

Problem #6 (Figure 7), 8-move rules in 16 moves, Cmax
8 = 10, σ = 3/8: b2-d4, c3-e5, e5-f6,

a3-c3-e5-g7, c1-c3-e5, a1-a3-c3, a2-c4-e4-e6-g6-g8, b1-d3-d5-f5-f7-h7, (reflect).

6Note this backward step move.
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Problem #3 (Figure 8), 6-move rules, jumps only in 35 moves, Cmax
17 = 8, σ = 12/35:

b2-d2, d1-d3, c1-c3-e3, a1-c1, c2-e2-c4, a4-c2-e2-e4, d2-d4-f4, a2-a4-c2, d3-f3-f5, f4-d4-b4-b2-d2,

b1-d1-d3-f3-d5, c1-c3-c5-e5-g5, a3-c3-c5-e5, e4-e6-g4-g6, b3-d1-d3, c2-e2-e4-e6, f5-h5-f7, d2-d4-d6-

(reflect).

Problem #4 (Figure 9), 6-move rules in 31 moves, possibly not shortest, σ = 32/93: c3-d3,

d2-d4, a4-c4-e4, c1-c3-e3-e5, a1-c1-c3-e3-c5, b3-b5-d5-f5, e5-d6, d4-f4-f6, e1-c1-c3-e3-e5-g5-e7, f6-g6,

a5-c3-e3-e5-g5-g7, b1-b3-b5-d5-d7-f7-h7, g7-f8, a2-a4-c4-c6-e6-e8-g8-i6, a3-c1-c3-e3-e5, b2-d2-d4-f4-

(reflect).

A 19-man Halma army crosses the board in 47 moves, probably not shortest, σ = 225/893:

d2-d4, c3-e5, e5-f6, a1-c3-e5-g7, g7-h8, c1-c3-e5-g7-i9, i9-j10, e1-c1-c3-e5-g7-i9, a3-c3-e5-g7, a5-c3-

e5, b3-d5-f5-f7-h7-h9-j9-j11, j11-k11, b5-b3-d5-f5-f7-h7-h9-j9-j11-l11, l11-l12, d1-b3-d5-f5-f7-h7-h9-

j9-j11-l11-l13, l13-m13, c4-e4-e6-g6-g8-i8-i10-k10-k12-m12-m14, m14-n14, e2-c4-e4-e6-g6-g8-i8-i10-

k10-k12-m12-m14-o14, d3-d5-f5-f7-h7-h9-j9-j11-l11-l13-n13-n15, a4-c4-e4-e6-g6-g8-i8-i10-k10-k12-

m12-m14-o16, b2-b3, b4-c3, b1-d3-d5-f5-f7-h7-h9- (reflect).
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